Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems.

نویسندگان

  • Zhenyun Qian
  • Fangze Liu
  • Yu Hui
  • Swastik Kar
  • Matteo Rinaldi
چکیده

Designing "ideal electrodes" that simultaneously guarantee low mechanical damping and electrical loss as well as high electromechanical coupling in ultralow-volume piezoelectric nanomechanical structures can be considered to be a key challenge in the NEMS field. We show that mechanically transferred graphene, floating at van der Waals proximity, closely mimics "ideal electrodes" for ultrahigh frequency (0.2 GHz < f0 < 2.6 GHz) piezoelectric nanoelectromechanical resonators with negligible mechanical mass and interfacial strain and perfect radio frequency electric field confinement. These unique attributes enable graphene-electrode-based piezoelectric nanoelectromechanical resonators to operate at their theoretically "unloaded" frequency-limits with significantly improved electromechanical performance compared to metal-electrode counterparts, despite their reduced volumes. This represents a spectacular trend inversion in the scaling of piezoelectric electromechanical resonators, opening up new possibilities for the implementation of nanoelectromechanical systems with unprecedented performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal DQM for a Nonlinear Buckling Analysis of DLGSs Integrated with Zno Piezoelectric Layers

The nonlocal nonlinear buckling of a double layer graphene sheet (DLGS) covered by zinc oxide (ZnO) piezoelectric layers is investigated in this study. The surrounding circumstances of the system are considered as a Pasternak foundation including spring constants and a shear layer. Graphene sheets are subjected to longitudinal magnetic field and biaxial forces. On the other hand, the ZnO piezoe...

متن کامل

Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride

The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects. We report on an optimization of the commonly used wet t...

متن کامل

A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator.

Sensors based on nanoelectromechanical systems vibrating at high and ultrahigh frequencies are capable of levels of performance that surpass those of larger sensors. Nanoelectromechanical devices have achieved unprecedented sensitivity in the detection of displacement, mass, force and charge. To date, these milestones have been achieved with passive devices that require external periodic or imp...

متن کامل

Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators.

Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top el...

متن کامل

A local optical probe for measuring motion and stress in a nanoelectromechanical system.

Nanoelectromechanical systems can be operated as ultrasensitive mass sensors and ultrahigh-frequency resonators, and can also be used to explore fundamental physical phenomena such as nonlinear damping and quantum effects in macroscopic objects. Various dissipation mechanisms are known to limit the mechanical quality factors of nanoelectromechanical systems and to induce aging due to material d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 2015